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A generalized energy stability analysis necessarily incorporating charge-diffusion 
effects is applied to an electrohydrodynamic equilibrium comprising a dielectric liquid 
confined between two planar electrodes and subjected to an injection of unipolar 
charge. Generalized energy, kinetic-charge and mixed-type functionals are considered. 
Using the physical constraint that the sign of space-charge density can never change, 
it is possible to  bound the nonlinear terms in the functional evolution equations. 
Sufficient conditions to guarantee global monotonic stability in the mean are 
then derived. In  the case of a strong injection of charge the mixed-type functional 
provides theoretical values of the stability parameter close to  the experimental 
values. Sufficient conditional stability bounds are also obtained for the leading-order 
diffusion-free equilibrium. 

1. Introduction 
I n  the last decade considerable experimental and theoretical effort has been 

directed towards explaining the effects of a d.c. electric field on a plane layer of 
dielectric liquid. I n  particular, the onset of fluid motion and the consequent 
augmentation of charge transfer has provided the impetus for a series of carefully 
controlled transient and steady-state electrochemical experiments and the application 
of appropriate mathematical instability analyses. By using ion-exchange membranes 
and electrodialytic varnishes on plane-parallel electrodes, it has been possible to  
investigate the consequences of almost space-charge-limited unipolar and bipolar 
injection into highly purified dielectric liquids and incorporate the modifying effects 
of residual conductivity. Atten & Lacroix (1978, 1979), considering the steady-state 
case of unipolar injection, established the existence of a hysteretical behaviour and 
found that the instability appeared in the form of a regular pattern of hexagonal cells. 
Two distinct values therefore were found for the critical stability parameter 
T = E@,/pvK, where Go, E ,  p,  v and K denote the applied d.c. potential, liquid 
permittivity, density and kinematic viscosity and the ion carrier mobility respectively. 
The higher value Tin gave the applied voltage for which the hydrostatic steady 
electrodynamic equilibrium became unstable to small amplitude perturbations. On 
the other hand the lower value Tin gave the voltage below which all finite-amplitude 
disturbances died out and the hydrostatic equilibrium state was recovered. Obviously, 
owing to inherent imperfections as well as difficulties in measuring system properties, 
the experiments provided a range of values so that Gin x 90f 10 and Tin x loo+ 10 
(Lacroix, Atten & Hopfinger 1975; Atten & Lacroix 1978, 1979). 

The theoretical analyses most relevant to these latter steady-state unipolar-injection 
experiments in which both injecting and collecting surfaces were rigid were initiated 
by Atten & Moreau (1972). On making the simplifying assumptions that the liquid 

t Present address : Gearhart Geodata Services Ltd., Aberdeen, Scotland. 



132 B. J .  S .  Deo and A .  T.  Richardson 

was a perfect insulator, that  injection was autonomous and that charge-diffusion 
effects were negligible, they obtained by a linear instability analysis a value for 
Tin M 160.750 in the space-charge-limited currents limit. This limit cogesponds to  an 
infinite value of the space-charge parameter C = Qod2/e@,,, where Q,, is the charge 
density on the emitting surface and d is the gap between the electrodes. On retaining 
charge-diffusion effects in his linear instability analysis, Atten (1975, 1976) sub- 
sequently obtained crude estimates for Tin x 145 * 3, 124 * 2 and 110 for pyralenes, 
nitrobenzene and the very highly polar propylene carbonate respectively. On the 
other hand a nonlinear analysis of convective rolls by Atten & Lacroix (1974), using 
a mean-field approximation, gave in the case of large but finite injection (C = 10) a 
value Gin x 118. More recently, however, using a modal approximation and a 
hexagonal planform, Atten & Lacroix (1978, 1979) have estimated, for the case of 
space-charge-limited currents, that  Gin x 110. Now relaxing the condition of auto- 
nomous injection undoubtedly modifies both Tin and Gin, but Atten & Lacroix (1974) 
have suggested that the latter is less sensitive to variations in the mechanism of 
injection. Furthermore, because of the high degree of purity of the experimental 
liquids, the predictions of a diffusionless linear instability analysis that  incorporates 
residual conductivity effects (Atten 1975) still do not appear to give a satisfactory 
explanation of the discrepancy between theory and experiment. 

All of the theoretical estimates to date have arisen from instability analyses and 
have consistently exceeded the experimental values. Alternatively an application of 
a generalized energy stability method (cf. Joseph 1976) can provide definite criteria 
that are sufficient for global and conditional asymptotic stability in the mean of the 
basic hydrostatic electrodynamic equilibrium. The formulation of such a theory 
requires a careful choice of positive-definite energy-type functionals. It is then 
possible to construct a variational problem th t  leads in general to nonlinear 
Euler-Lagrange equations which, together with appropriate boundary conditions, 
constitute a differential eigenvalue problem whose eigenvalues correspond to critical 
values of the stability parameter T.  These stability limits, because of the nonlinearities 
in the governing equations, are in general expected to be conditional, i.e. dependent 
upon the amplitude of the disturbance. However, in the present context, for certain 
choices of functional and by using a physical inequality constraint, it is possible to 
obtain linear Euler-Lagrange equations and consequently global stability limits. 
After obtaining the minimum eigenvalue r and corresponding critical wavenumber 
a for a particular functional, it  is then possible to maximize over any linking 
parameter h so as to obtain the largest region of stability available within the theory. 

2. Governing equations 
Consider an incompressible dielectric liquid of constant density p, electrical 

permittivity e and kinematic viscosity v confined between two rigid planar perfectly 
conducting electrodes of infinite extent and distance d apart. Suppose that an 
autonomous injection of unipolar charge is emitted from the z = 0 electrode, which 
is maintained a t  potential @,,, and that the collecting electrode a t  z = d is maintained 
a t  zero potential. The governing electrodynamic field equations in which magnetic 
effects have been neglected are 

where @, E, D ,  J a n d  Q denote electrical potential, electric field, elecbric displacement, 
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current density and space-charge density respectively. Assuming further that the 
liquid is a linear isotropic dielectric and that charge is transported by convection, 
migration and diffusion, the additional electrical constitutive equations are 

where Uis the liquid velocity and D, is the charge-diffusion coefficient. To these must 
be added equations expressing the balance of linear momentum, in which the 
electrical force is Coulombic, and the conservation of mass. For a constant-density 
Newtonian fluid these reduce to  

1 1 
~ = - u . v u - - v P + ~ v ~ u + - Q E ,  v w =  0, (2.3) 
at P P 

where P is the pressure. 

transformations : 
Equations (2.1)-(2.3) may now be non-dimensionalized by making the following 

U + O  K @  u, t - t - t ,  d 2  P+- P K @ ,  p ,  
d V d A  

so that velocity is scaled with respect to the ionic drift velocity and time with 
respect to the viscous decay time. Then without loss of generality @, E and Q are 
all non-negative. A dimensional analysis suggests that four non-dimensional 
parameters are required for a full specification of the problem. We need to  quantify 
the applied potential, the electrical current, the ionic carrier mobility and characterize 
the particular dielectric liquid under consideration. For convenience we choose the 
following non-dimensional groupings : 

where the parameter T represents the ratio of the Coulombic forces to viscous forces, 
C is a measure of the injected charge, M is the ratio of hydrodynamic mobility to 
ionic mobility, and S is a new parameter, taking values for typical experimental 
dielectric liquids in the range 0.04-0.4, which enters because we have retained 
charge-diffusion effects. Equations (2.1)-(2.3) then reduce to 

- - -- U.VU-VP+V2U+TQE, 
at M2 

It is worth noting that the grouping T I M 2  = KQ0/v is a Reynolds number based 
on the ionic velocity and that S / M 2  = D,/u is an inverse electric Prandtl number. 

Generalized energy methods applied to  infinite domains require the construction 
of spatially averaged integrals. We could choose to average over a ‘periodic cell’ of 
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length X ,  in the x-direction, Y, in the y-direction, and of volume Yo. We could then 
define the volume average of a scalar field f2 by 

xo y o  1 

(f2) = &j, j 1 1 c . C ~  y, z ,  t )  dzdydz, 

and a volume-averaged surface integral of a vector field f by 

0 0  

where d 9  is a vector element of the surface Yo enclosing the volume Yo. However, 
by averaging over the entire layer, we can extend these definitions to include 
almost-periodic functions (cf. Joseph 1976) in the subsequent analysis. Then, allowing 
U to  be an almost-periodic solenoidal vector field vanishing on the rigid boundaries 
z = 0 and z = 1, the Reynolds transport theorem permits us to  express the Lagrangian 
time derivative of the volume average of a scalar field f2 as 

From (2.6) we can therefore deduce that 

(2.10) 

from which it can be seen that T(QE* U) is an energy-production integral which 
couples the charge and electric-field distributions to  the kinetic energy of the liquid 
motion. Moreover, since the scaled total charge Q 2 0, we see that charge can only 
be increased by surface effects, as might have been expected from the physical 
simplifications implied in the model. 

Now the governing equations (2.6) possess a steady one-dimensional hydrostatic 
equilibrium solution in which electrical potential Qe(z )  satisfies the nonlinear 
equation 

and is subject to boundary conditions 

(2.12) 

(2.13) 

The first two conditions follow from the fixing of potential on each of the electrodes. 
The latter two constitute an injection and an ejection law specifying how charge is 
introduced and removed from the liquid layer. There exists an exact solution of (2.12) 
in terms of Airy functions, but specific evaluation of the equilibrium requires 
numerical analysis (cf. Deo & Richardson 1983). I n  most dielectric-fluid experiments 
the parameter SIT = l l c /K@o is small, and so the solution Ge(z) exhibits a mainstream 
and boundary-layer character (cf. Richardson 1980). To leading order this mainstream 
solution for which E = E J z )  i, with corresponding space-charge density Q = Qe(z )  can 

(2.14) 
be specified by 

J 
, Qe(z )  = ~ 

Ee(z)  ' 
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where J is a real constant uniquely determined by the cubical boundary constraint 

= 0. 
4C4J 3C4 

3 2  
J3 + (2C-  1 )  C P  + - - - (2 .15)  

The time evolution of nonlinear perturbations u, e and q in liquid velocity, electric 
field and space-charge density of the equilibrium given by (2 .14)  and (2.15) is 
governed by equations 

au T 
( 2 . 1 6 ~ )  - - - -- u-VU- V p  + V2u + T[qE+ Qe + qe], 

at MZ 

ae T S 
- = b -- [Qu+ qu + qE+ Qe + qe] +- Vq, 
at M2 M2 

at ~2 MZ M2 

e = -V$,  V - e  = q ,  V - u  = 0, (2 .16d,  e , f )  

(2.16 b )  

( 2 . 1 6 ~ )  
a q -  T T S 

[u- VQ + u*Vq] --V. [qE+ Qe+ qe] +-V2q,  - - -- 

where (2 .16b)  has been derived by integration of (2 .16c) ,  p is the perturbation in 
pressure and q5 the perturbation in potential, b is an arbitrary solenoidal vector field, 
and the suffix e has been omitted. Since we are considering a unipolar injection of 
charge, we must in addition impose the physical constraint 

Q + q  2 0, (2 .17 )  

which corresponds to the fact that  nowhere in the liquid can the charge density change 
sign. On forming the appropriate inner products and using the vanishing of both $ 
and u on the electrodes, we can readily deduce from (2.16) the time-evolution integral 
equations 

d 
- (ilu12) = T(qE*u+ (Q + q )  e - u )  - (lVuI2), dt 

(2 .18)  

(2 .19)  

The time rate of change of any positive-definite generalized energy functional 
comprising a linear combination of leI2 and q2 will consequently not be 
homogeneous of degree two in the disturbances. Indeed it will involve both quadratic 
and cubic nonlinearities. This implies that  i t  would not be possible directly to obtain 
a criterion for monotonic stability which is independent of the amplitude of the 
disturbance. However, by using the physical constraint (2 .17)  we can bound these 
cubic terms to obtain a lower estimate of the stability criterion. By using suitable 
trial functions we can also obtain an upper estimate. At the same time of course we 
can bound the cubic terms in a different fashion and obtain conditional stability limits 
that  depend upon the functional’s initial ( t  = 0) value. In  the next sections we will 
consider three functionals : 

(a )  a weighted energy functional 

&,( t ;A)  = ~(lu12+AM21e12), (2 .21)  
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( b )  a kinetic-charge functional 

(c) a mixed functional 
€,( t ;A)  = S(luI2+AM2q2), (2.22) 

b,(t;A) = +(lu12+W1e12+AM2q2), (2.23) 

where A is a scalar linking parameter, having noted that the coupling integral average 
( e - u )  = 0. 

3. Generalized energy stability analysis 
Having decided upon a suitable generalized energy functional &(t ; A )  incorporating 

the linking parameter A,  we can form the evolution equation 

-= T J + S - D ,  
db 
dt 

where volume production integral 5 ,  surface productionintegral § and positive-definite 
dissipation integral D are explicitly independent of the stability parameter T .  Whilst 
D is quadratic in the perturbations, in the present context both 5 and § are in general 
cubic. If, for fixed values of the parameters C, M and S, we define T = ? ( A ,  T )  and 
A = A(A) by 

W n 
we can then write 

(3.4) 

Here H($,  u )  is the space of kinematically admissible almost-periodic functions 
specified by 

H = {($, u): V2$ d &(z), $ l z - o  = $ I z x l  = 0 ;  V * u  = 0 ,  uIz-0 = uIz-l = O } .  (3.5) 

Since the basic equilibrium state is steady, integration of the inequality (3.4) leads 
to a bounding envelope of the functional so that  

€ ( t ; A )  < b(O;A)exp[-2A($-:)t], (3.6) 

for t 3 0. The critical value of the stability parameter 7 ,  below which the functional 
b ( t ; A )  decays to zero monotonically with time and independently of its initial 
amplitude &(O ; A ) ,  is determined by the solution of the equation 

7 ( A , ' i )  = 7.  (3.7) 

In  this sense we have global monotonic stability of the basic state for T < 7. Although 
an individual component of the functional b(t ; A )  could well increase initially, i t  must 
ultimately decay. Since our choice of linking parameter A is arbitrary we can further 
seek an optimized value 7 of 'i defined by 

- 
The corresponding decay rate measure A can then be evaluated a t  A,  the optimizing 
value of positive real-valued A. 

Since the maximum problem (3.2) leads to  nonlinear Euler-Lagrange equations, 
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we can avoid analytical complexity by using the physical constraint (2.17) to bound 
the cubic functionals J and § by quadratic functionals J ,  and S ,  and hence define 

7FI=rnax(  J Q + § I T  D~ ) 2 m F (  5 + § / T  ) = . - I .  

H 
(3.9) 

Alternatively, by retaining the cubic functionals we can, by use of suitable trial 
functions, obtain a suboptimal value of 7-l. Consequently we have both upper 
and lower bounds for the exact value 7 so that 

TI < 7 < (3.10) - 
From this it follows that 7, < 'i < 72 and that 5,(h) < 5(x) < T 2 ( X ) .  

If, on the other hand, we define 

(3.11), (3.12) r e ' =  max( J o  + §o/T 
H H 

where 5,  and So are the quadratic parts of the cubic functionals J and S ,  we can obtain 
an inequality 

(3.13) 

where G(A) is a positive constant that arises from analytically bounding the cubic 
parts of J and § in terms of d and D. Then for all initial amplitudes 

i t  follows that 
(3.14) 

4 t ;  A )  4 0 ;  A )  2exp[-(l-:)At]. (3.15) [ (f- $) - G&( t ; A ) ]  z <  [ ( T- 1 1  --) - Gan(0 ; A ) ]  

Hence Tf = re(A, ;il) is a zero-amplitude conditional stability limit. As before, we can 
optimize over A and define ?[. Equation (3.14) then prescribes an  approximate 
attracting radius for conditionally stable disturbances of the equilibrium state. 

I n  the subsequent analysis we find that with the appropriate boundary conditions 
from the Euler-Lagrangian theory we have § = 0. If we consider the diffusion-free 
mainstream approximation (2.14) and (2.15) and accordingly neglect the ejection law 
corresponding to the fourth condition (2.13), the functional 5 is totally independent 
of T.  Then 'i = 7 .  Whilst a t  first sight a stability analysis incorporating diffusion effects 
of a diffusion-free equilibrium may appear somewhat inconsistent, the results of such 
an approximation to the full diffusion analysis are presented for comparison. 
Furthermore, the existence of finite-valued 7;l, re1 and A-l is guaranteed by proofs 
similar to that given for rl in the Appendix. Their respective values are therefore 
obtained by determining the lowest eigenvalue of a linear Euler-Lagrangian 
differential system. 

4. The weighted energy functional 

that its time evolution is governed by 
If we consider the functional defined by (2.21), we find, on using (2.18) and (2.19), 

-- ddl - T (qE.  (u - he) - (& + p) [AJeI2 + ( A  - 1) e ~ u ] )  + AS(qe), - ( J V U ( ~  + A X q 2 ) ,  (4.1) 
dt 

so that J is cubic and both § and D are quadratic in the perturbations (cf. (3.1)). 
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4.1. A global monotonic bound 
In  the special case h = 1 this functional is just the total energy of the perturbation, 
and the cubic term (qe -u)  does not appear. Furthermore, the cubic term (qle12) using 
inequality (2.17) can be avoided so that  only quadratic functionals remain. The lower 
bound 71 is then defined by 

The importance of a non-zero value for S in this analysis is readily apparent. If S = 0 
then finite maxima do not exist and 71 = A = 0. Diffusion effects therefore are 
paramount in such a stability analysis. 

The linear Euler-Lagrange equations associated with the maximum problem (4.2) 
are 

2 

71 
-v2(v A U ) + v q  A E = 0 ,  (4.4) 

-V. (qE)  = 0, 1 (4.5) 

where we have used the fundamental lemmas for scalar and solenoidal vector fields 
of the variational calculus. I n  addition we find that the variational method leaves 
us with a surface integral 

S 
( (le12 + E - e )  e’+- (qe’- q’e)).Y = 0, 

71 

where ’ indicates an arbitrary variation. Equations (4.4) and (4.5) together with 
(2. led-f) constitute an eighth-order differential system. Accordingly we must impose 
eight boundary conditions. Six of these are essential, i.e. those of no slip and fixed 
potential, and the remaining two are to be obtained from condition (4.6). If we choose 
these to be the essential conditions e = 0 on z = 0 and z = 1 then (4.6) is certainly 
satisfied. We now restrict our class of kinematically admissible functions to H*, where 

(4.7) 

(4.6) 

H* = H(#,  u )  n {$:V#Iz=,, = V$l,=l = 01. 

This means as previously mentioned that the surface integral in (4.1) vanishes. 
On Fourier-decomposing u = [u, w, w] and $ into normal modes so that 

and on writing a2 = k2 + Z2 and D = d/dz, we find that the variational problem (4.2) 
is equivalent to the eighth-order differential eigenvalue problem 

2 

71 
-(D2-a2)2 W + C C ~ E ( D ~ - C L ~ )  @ = 0, (4.9) 

2s 
- ( D 2 - ~ 2 ) 2  @+ [(DE) D2+ (D2E)D+a2(DE)]  @+ (D2-a2) ( E W )  = 0, 
7 1  

(4.10) 

subject to boundary conditions 

W = D W = @ = D @ = O  ( ~ = 0 , 1 ) .  (4.11) 
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C acrit 71 7 2  

(0) (5.643) (5.83192) (5.91) [a = 5.51 
5.644 5.8327 5.91 [ (5.643) (5.83265) (5.91) [a = 5.51 0.001 

5.641 5.8392 5.95 { (5.639) (5.8391 7 )  (5.95) [a = 5.51 0.01 

5.608 5.8986 6.30 
0.1 ((5.607) (5.89855) (6.31) [a = 5.51 

5.378 6.1241 8.64 [a = 6.51 
1 l(5.381) (6.11887) (8.83) [a = 5.51 

0 4.5212 10.90 
10 l(5.113) (5.99969) (10.33) [a = 7.51 

0 2.4193 11.13 [a =8.0] 
100 l(5.101) (5.98673) (10.37) [a = 7.51 

0 0.92898 11.03 [a = 8.01 [ (5.100) (5.98657) (10.37) [a = 7.51 
(a) (5.100) (5.98657) (10.37) [a = 7.51 

1000 

TABLE 1. Numerical values of the global monotonic stability bound 7, and corresponding critical 
wavenumber acrit together with trial-function estimates 7, a t  specified z-wavenumber a for the 
energy functional b,(t; 1 )  in the case S = 0.1. Results in parentheses are those obtained for the 
diffusion-free equilibrium. 

The values o f t ,  minimized over wavenumber a for various values of C for both the 
diffusion and diffusion-free equilibrium in the special case S = 0.1 were obtained 
numerically, and together with estimates T 2 ,  using y-independent trial functions of 
the form 

# = (1 - cos 2x2)  sin ax, 

1 a 
27c 

sin 2nz cos ax,  0 ,  - (1 - cos 2nz) sin ax , 

(4.12) 

(4.13) 

where a is an x-directional wavenumber, are presented in table 1. 

the decay rate 
Similarly the Euler-Lagrange equations for the variational problem (4.3) governing 

on Fourier-decomposing, become 

) ( D 2 - a i )  @ = 0, ( D 2 - a b + i A )  ( D 2 - a b )  W = 0, (4.15) 
AM2 
2s 

D2-CX$+- 

subject to the boundary conditions (4.11). Clearly, since there is electrical and 
fluid-dynamic decoupling, if the electrical Prandtl number M 2 / S  = v /D ,  =/= 1, one and 
only one of @ and W must vanish identically. Numerical integration indicates that  

A z 74.162min -, 1 , acrit = (a~,,it,aWcrit) = (2.399,2.399). (4.16) 
G 2  ) 

Hence if M 2 / S  > 1 we must choose W = 0, whilst for W / S  < 1 we must choose 
CP = 0. This is perhaps to be expected, since in the former (latter) case viscous 
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C 

0 
0.001 
0.01 
0.1 
1 

10 
100 

1000 
00 

h 
- 

2.78 x 107 
2.80 x 105 
3.07 x 1 0 3  

69.0 
22.3 
21.65 
21.64 
21.64 

%it 

3.95 
3.95 
3.95 
3.95 
3.995 
4.134 
4.143 
4.143 
4.143 

- - 
T l  

8.0194 x lo4 
8.0555 x lo3 

- 

841.978 
124.375 
68.001 
68.803 
66.791 
66.791 

TABLE 2. Numerical values of the conditional $ability bound Fl with corresponding critical 
wavenumber acrit and optimal linking parameter h for the weighted energy functional &,(t ; A )  in 
the case S = 0.1 using the diffusion-free equilibrium 

dissipation is a more (less) efficient process than charge diffusion, and the velocity 
disturbances would decay more (less) rapidly. For the dielectric liquids used in 
experiments lo3 5 W / S  5 lo6, and the former case therefore appears more physically 
relevant. 

4.2. Conditional stability bounds 

We consider the case of an arbitrary linking parameter A.  Then we have (cf. (3.11) _ -  
and (4.1)) 

(4.17) 
*u+  (1  - A )  &e*u-A(pE*e+ &leI2)) 

( (VUl2 + AS$) 
- 'iel = min max 

h H *  

and i t  is readily seen that in this context (cf. (3.12)) A is again given by (4.16). The 
associated Euler-Lagrange equations for the maximum problem (4.17), on Fourier- 
decomposing, are equivalent to  the linear eigenvalue problem 

2 
-(D2-az)2 W+a2E(D2-a2)@+012(h-l) ( D 2 E ) @  = 0, 
7/ 

(4.18) 

2hX (U2 - a2)2 Q, - h[(DE) D2 + (LYE) D - 3a2DE] Q, 
TP 

+(D2-a2)(EW)+(A-1)(D2E) W =  0, (4.19) 

subject to the eight boundary conditions (4.11). Values of x, acrit and ?/ obtained 
from these equations using only the diffusion-free equilibrium are presented in 
table 2. From (2.14) and (2.15) we find in the limit (7-20 that  E - 1 ,  DE - G and 
D2E * -C2, and a leading-order analysis of (4.18) and (4.19) implies 

where r/  - ToC-l, x - hoC-2, Q, - G0C, w - w,, 
2 
- ( D 2 - ~ 2 ) 2  Wo+a2[D2-a2-A 01 @o = 0,  
7 0  

(4.20) 

---S(D2-a2)' 2AO @0-h0(D2-3~2)  @o+ (D2-a2-ho) Wo = 0. (4.21) 
70 

Numerical computation then suggests 
- 

?/C = ro x 80.154, hC2 = A, x 27.8, aCrit x 3.95. (4.22) 

Notice that this analysis is distinct from that given by Atten & Moreau (1972), who, 
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considering linear instability, found in the limit C+O that TC2 z 220.76214 (cf. 
figure 2). 

The determination of the attracting radius of conditional stability requires an 
evaluation of G (cf. (3.14). However, the cubic terms appearing on the right-hand side 
of (4.1) can be bounded in two different ways. We confine our attention to 
two-dimensional disturbances belonging to H* which are 2nla-periodic in x and make 
use of the embedding inequalities (cf. Joseph 1976). Then first we have 

- 

where 
( ( A  - 1) qe-u + AqleI2) Q Gc@ D, (4.23) 

2 a (4.24) 
{IA-ll+m,lA-ll+2Al}> L2 = i+ 2n( 1 + a2)i ’ 

L 
(2hS)i 

G = -  

which implies that the bound on € , ( O ;  A)+ 00 as T+O independently of A. Secondly, 
on using the constraint (2.17), we can neglect the term AQleI2 in the numerator of 
(4.17), but we obtain a value 7; < 7/. By a similar analysis we can also find that 

- ( l ~ - l l q e * u )  Q G ~ ! D ,  (4.25) 
where 

(4.26) 

Here, however, as A+ 1 we note that G + O ,  so the bound on 8,(0; A)+m and 7;+71, 
the global monotonic bound discussed in $4.1. 

For different linking parameters, and therefore for associated functionals, we can 
now obtain two distinct familiesof conditional stability curvesin the (T ,  € , ( O  ; A)-plane. 
By superimposing these curves we can in principle determine an envelope for 
l~(0)1~+AM~1e(O)1~ as a function of T below which we can guarantee stability in tthe 
mean of the equilibrium state (cf. Joseph 1976, fig. (2.1); Deo 1983). 

5. The kinetic-charge functional 
The evolution equation for the charge functional defined by (2.22) is 

db, = T(qE * u  + (&+a) u * e -  Aqua VQ - AqV. (qE+ Qe + qe) )  
dt 

+ AS(qVq)y- (lVUI2 +ASIVq12). (5.1) 

Once again J is cubic and both § and D are quadratic in the perturbations (cf. (3.1)). 
Unlike the weighted energy functional in the special case A = 1, we are unable to 
bound the cubic terms on the right-hand side of (5.1) by quadratic terms and so obtain 
a global monotonic stability bound. A variational analysis of the problem specified 
by (3.2), (3.3) and (5.1) leads to a surface-integral constraint similar to (4.6), but in 
this case indicates that we must impose ten boundary conditions, which we choose 
to comprise fluid no-slip, fixed potential, fixed field and fixed charge density a t  z = 0 
and z = 1. We accordingly define H** as the space of functions 

(5.2) H** = H*($,u)  n {$:V2$~z-o = Vz$lz-, = O } .  

The fact that the surface values of the perturbations e and q must indeed both vanish 
is related to the postulated existence of monotonic non-autonomous injection and 
ejection laws that relate the space-charge density to  the electrical field at both the 
emitting and collecting electrodes (cf. Atten & Moreau 1972). Hence we again have 
the surface functional § = 0. 
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0.01 
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10 
100 
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00 

- x 
1.00 x 106 
- 

1.01 x 104 
111  

2.496 
0.87 
0.84 
0.837 
0.837 

acrit 

5.731 
5.731 
5.731 
5.734 
5.900 
6.314 
6.33 
6.330 
6.330 

?t 

- 

1.37343 x lo5 
1.37963 x lo2 

1442.7 
2 18.809 
133.822 
132.10 
132.08 
132.08 

TABLE 3. Numerical values of the conditional stability bound ?[ with corresponding critical 
wavenumber acrit and optimal linking parameter A for the kinetic-charge functional gz(t ; A )  in the 
case 8 = 0.1 using the diffusion-free equilibrium 

From (3.11) and (5.1) we have 

(qE * u + Qua e - hqu. VQ - AqV - (qE+ Qe) )  
9 (5.3) 

- - _  

(IVUl2 + hXIVqI2) 
7! = minmax 

A H** 

and the corresponding linear eigenvalue problem after Fourier-decomposing is then 

(5.4) 
2 
- (D2 - 0 1 ~ ) ~  W +  a2{[E- A(D2E)] (D2 - a2)  - (D2E)} @ = 0, 
7f 

2hS -(D2-a2)3 @-A{S(DE) D4+6(D2E) D3+2[2(D3E)-3a2(DE)]D2 
7e 

+ [(D4E) -6a2(D2E)] D+ 3a4(DE) -2a2(D3E)} @ 

- { [ E -  A(D2E)] D2 + 2[(DE) -A2(D3E)] D -a2E+ Aa2(D2E) -A(D4E)} W = 0, (5.5) 

subject to the boundary conditions 

W = DW = @ = DO = D2@ = 0 ( Z  = 0 , l ) .  (5 .6)  

Values of x, aCrit and 7[ obtained by numerical integration of these equations are 
presented in table 3. Here again we have only used the diffusion-free equilibrium so 
that = 7/. Furthermore, a leading-order analysis of these latter equations, in the 
limit C-tO, in which 

?/ - 70C-1, (I- A 0 C 2 ,  @ - #j0C and W - W, 

gives 2 
- ( D 2 - ~ 2 ) 2  Wo+~2(1+AO)(D2-~2)O0  = 0, 
70 

(5.7) 

2h, S 
- (D2-~2)3@O-3Ao(D2-~2)2@o-( l  +ho)(D2-a2)  Wo = 0, (5.8) 

70 

and numerical computation suggests 

Similarly the decay rate A defined by 

(5.10) 
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is obtained from the decomposed Euler-Lagrange equations 

subject to the boundary conditions (5.6). By a similar argument to that leading to 
(4.16) we find that 

A z 74.162min aCrit z (4.530, 2.399). (5.12) 

As before we can obtain in two ways bounds on the initial amplitude € 2 ( 0 ; h )  that 
guarantee conditional stability. Neither of these, however, approximates to a global 
monotonic asymptote in the (T, d2(0; A))-plane, and therefore we do not present them 
here. 

6.  The mixed functional 

evolution equation is 
Finally we consider the functional €,(t;h) defined by (2.23) and for which the 

-- dd3 - T(qE.  (u - e )  - (Q + q )  leI2 - hqV. (pE+ Qe)  -4hq3 - hqu*VQ) 
dt 

+ S ( q e +  hqVq-+hq2e),-((JVu12+Sq2+hSIVQ12). (6.1) 

As can be seen from (6.1), both the functionals 5 and S are cubic in the perturbations, 
whilst the dissipation functional D again is quadratic. 

6.1. Global monotonic bounds 

Since the inequality (2.17) implies that  the cubic terms 

( - ( Q + d  leI2--+h3) < <$hQq2), 

we can bound 5 by a quadratic functional. Furthermore, a variational analysis 
indicates that  the appropriate space of functions over which to  maximize is once again 
H** as defined by (5.2). The vanishing of the space-charge perturbation q on the 
boundaries then implies that the surface functional S once again vanishes. Accord- 
ingly we obtain an optimal lower bound to a global monotonic bound given by 

(qE*(u-e)-AqV*(qE+Qe)-Aqu*VQ+~AQq2) 
( IVuI2 + sq2 + hSIVq12> 

- 
7c1 = min max 

A H** 

(6.3) 

The Euler-Lagrange equations associated with the maximum problem (6.2) are 

(6.4) 
2 
-V2(V A u)+Vq A E t h V Q  A Vq = 0,  
71 

25 (hV2 - 1) V2q + hV2[EmVq - u . VQ + Qq - V * (Qe + qE)] 
71 

+ V 2 [ E *  ( u - e ) ] - - V -  (AQVq-pE) = 0, (6.5) 
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(5.750) 
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(5.860) 
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6.256 

6.6 
(6.2) 

(6.2) 
(6.2) 

- 
?l 

- 
(9.650 x lo4) 
(9.693 x lo?) 

1015.4 
(1013.6) 

153.0 
(152.98) 

89.47 
(91.74) 
80.01 

(90.3) 
67 
(90.3) 
(90.3) 

T2(X) 
- 

(1.497 x 10') [a = 6.01 
(1.504 x lo4) [a = 6.01 

(1.573 x lo3) [a = 6.01 
1.573 x lo3 

240.7 
(240.6) [a = 6.01 
150.4 

(152.3) [a = 6.51 
144 

(151) [a = 6.51 
128.3 [a = 6.51 

(151) [a = 6.51 
(151) [a = 6.51 

TABLE 4. Numerical values of the global monotonicstability bound with corresponding critical 
wavenumber acrit and optimal linking parameter A together with trial-function estimates F 2  at 
specified wavenumber a for the mixed functional b,(t; A )  in the case S = 0.1. Results in parenthesis 
are those obtained for the diffusion-free equilibrium. 

together with (2.16d-f). Normal-mode analysis then gives 

(6.6) 
2 
-[D2-aZl2 W+a2[E-h(D2E) ]  (D2-a2) Q, = 0, 
71 

2 s  
- [D2 - u2l2 [h(D2 - a2) - 11 Q, - {2h( DE) D4 + 4h(D2E) D3 + [3h( D3E) 
71 

-4ha2(DE) + (DE)] D2 + [h(D4E)-4ha2(D2E) + (D2E)] D 

-ha2(D3E)+2ha4(DE) +a2(DE)} Q,- { [E-h(D2E) ]  D2 

+ 2 [ ( D E ) - h ( D 3 E ) ] D - a 2 E + ( h a 2 +  1) (D2E)-h(D4E)} W = 0, (6.7) 

subject to the boundary conditions (5.6). The resulting values of x, acrit and 
obtained numerically for both the diffusion and diffusion-free equilibria are presented 
in table 4 together with estiniates T2 using y-independent trial functions of the form 

q5 = z3(1  sinax, ax, (6.8) 

~1 = [22( 1 - z )  (1 - 22) cos ax, 0, az2( 1 - z ) ~  sin ax], (6.9) 

where a is an x-directional wavenumber. Once again for the diffusion-free equilibrium 
case, a leading-order analysis as C+O leads to equations 

2 
- (DZ - C X ~ ) ~  Wo +a2( 1 + A o )  (D2 -a2)  Q0 = 0, 
70 

(6.10) 

(6.11) 
2Sh0 
- ( ~ 2  - a2)3 Go - 2 h , ( ~ ~ - a ~ ) ~  dj0 - (1 + A o )  (D2 - a2)  Wo = 0, 

70 

so that 
- 

?,C = 70 x 96.517; hC2 = A, x 1.003, acrit x 5.748. (6.12) 
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A 

co (C = 0) 

110.9 (C % 10-1) 

1.00096 x LO6 (C % 

1.0147 x lo4 (C % 

2.5147 (C % 1) 
0.87 (C x 10) 

0.83 (C > loz) 

N ( h )  
2.017 
2.017 
2.017 
2.017 
2.012 
2.002 
2.001 

4 A )  
4.530 
4.530 
4.530 
4.530 
4.510 
4.467 
4.464 

TABLE 5. Values of decay-rate parameter N(h) and associated wavenumber parameter A(/ \ )  

The maximum problem defined by (6.3) now leads to Euler-Lagrange equations 

2 
A 

V 2 @ = 0 ,  - V 2 ( V ~ ~ u ) + V ~ u = O ,  V . u = O ,  (6.13) 

which in normal-mode form become 

2 s  - 
[h(D2 - a2) - 11 [m (D2 - a2) + 1 1  [D2 - a2] @ = 0, 

(D2-aZ++A) (D2-aZ) W = 0, (6.14) 

subject to the boundary conditions (5.6). Here, however, A depends upon x, which 
of course depends upon the injection parameter C. We may write then 

A z 74.162min N ( X ) - ,  1 , a,,it z [A(a),2.399], [ 4 1  (6.15) 

where N(A) and A(A) are slowly varying functions and given for selected values of 
h in table 5. We note that with the diffusion-free equilibrium in the limit C- tO for 
which x+ cg this preblem is identical with that of (5.11) with solution (5.12) so that 
N(h)-t2.017 and A(h)- t4 .530.  

6.2. Conditional stability bounds 
From (3.11) and (6.1) we have 

( q E .  (u-e)  - Q(e12-AqV*(pE+ Qe) - Aqu-VQ) 
(IVUl2 + sq2 + hSJVql2) 

- 
‘i; = min max 

A Hb* 

with corresponding Euler-Lagrange equations in normal-mode form 

2 
-[D2-a2I2 W+a2[E-A(D2E)] (D2-a2) @ = 0, 
re 

(6.17) 

2s 
- [D2 - 0 . ~ 1 ~  [h(D2 - a2) - 11 @ - {3A(DE) D4 + 6A(D2E) D3 
7e  + [4A(D3E) - 6Aa2(DE) + (DE)] D2 + [h(D4E) - 6Aa2(D2E) 

+ (D2E)] D- 2Aa2(D3E) + 3ha4(DE) - 3a2(DE)) @ 

- { [ E -  h(D2E)] D2 + 2[ (DE) - h (D3E)] D - a2E 

+(Aa2+1)(D2E)-A(D4E)) W =  0, (6.18) 



146 B. J .  S. Deo and A .  T. Richardson 

c 
0 
0.001 
0.01 
0.1 
1 

10 
100 

1000 
co 

- 
A 

1 .oo x 1 0 8  

- 

1.01 x 104 
110.4 

2.49 
0.86 
0.831 
0.83 
0.83 

%it 

5.731 
5.73 
5.73 
5.73 
5.88 
6.27 
6.28 
6.28 
6.29 

T( 
- 
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1.379 x lo4 
1.4426 x lo3 

218.20 
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131.08 
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131.1 

TABLE 6. Numerical values of the conditional st_ability bound 7, with corresponding critical 
wavenumber acrit and optimal linking parameter A for the mixed functional d3(t; A )  in the case 
S = 0.1 using the diffusion-free equilibrium 

subject to the boundary conditions (5.6). The corresponding values of 2, aCrit and 
obtained numerically for the-diffusion-free equilibrium are presented in table 6. 
In the limit C+0, since 2 - A,C-2, @ - @,C and W - W,, the functional 
~ 9 ~ ( t ; X ; r $ , u )  - cf'2(t;ho;r$o,~o).  Hence the solution of the problem (6.17), (6.18) and 
(5.6) in this limit is given by (5.9). The corresponding problem for the determination 
of A as defined by (6.3) is specified by (6.14) and (5.6) with solution given by (6.15). 
In  this case also we can obtain attracting radii for the initial amplitude Q 3 ( O ;  A )  that  
guarantee conditional stability though we do not present them here. 

7. Numerical analysis 
All numerical calculations were carried out on Honeywell Multics/ICL 2980 

machines using a Chebyshev collocation technique in which the unknown functions 
were represented by a finite series of Chebyshev polynomials. The diffusion equilibria 
were evaluated and the resulting linear algebraic systems were solved using standard 
library routines. The degree of approximation required to give the accuracy to which 
the results are quoted was usually 30 although checks were made using polynomials 
of degree up to and including 35. 

Owing to the singular perturbation nature of the diffusion equilibrium (2.12) and 
(2.13), numerical difficulties were encountered for injection strengths C < 0.1 and 
C > 500 when using the functional &',(t;A). The solution 7 of ~ ( h , ? )  = 7 was found 
by an iteration scheme operating on values of 7 minimized over wavenumber a, and 
estimates 7 were then found by maximizing over the linking parameter h using 
quadratic curve-fitting routines. I n  order to guarantee good convergence of the 
Chebyshev series and to  avoid the problem of ill-conditioning i t  was found necessary 
to filter the equations before processing. For (4.18) and (4.19) subject to the boundary 
conditions (4.11), greater accuracy was achieved for C 5 0.1 by solving for CT, C2h, 
C-W(z) and W ( z ) .  On the other hand, for (5.4), ( 5 . 5 ) ,  (6.6), (6.7) and (6.17),  (6.18) 
subject to the boundary conditions (5.6), greater accuracy was achieved for C 2 10 
by solving for z@(z)  and z W(z)  with appropriately modified boundary conditions. 

The trial functions for the energy functional b,(t; 1 )  for 6 and u given by (4.12) 
and (4.13) were chosen to have a single-cell z-dependence satisfying boundary 
constraints (4.1 1) and sinusoidal z-dependence with a specified wavenumber a. The 
fact that  the cubic production integrals then vanished meant that  the ratio of 
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10-2 lo-' I I0 102 103 

FIGURE 1. Variations of the optimized stability criteria with injection parameter C for the diffusion 
equilibrium (8 = 0.1): (a )  global monotonic p ,  values for b,(t; 1) ;  ( b )  global monotonic 7, values for 
b,(t; 1); (c) global monotonic t, values for b,( t ;A) ;  (d )  linear instability results for fixed 
SIT = 5 x lo-, after Atten (1976) ; ( e )  global monotonic 5, values for b&t; A ) ;  (f) linear diffusion-free 
instability curve of Atten & Moreau (1972). 

production to dissipation integrals became homogeneous of degree two in the 
amplitudes of $ and u. The ratio of these amplitudes was then determined analytically 
so as to minimize ' i2. The trial functions for the mixed functional 8 J t ;  A )  given by 
(6.8) and (6.9) satisfying boundary constraints (5.6) were similarly chosen. However, 
in this case an algebraic z-dependence proved to give a lower value of T2 than that 
provided by a trigonometrical z-dependence. 

8. Discussion and concluding remarks 
All the foregoing eigenvalue problems involving the parameter S were solved 

numerically in the case S = 0.1. This value was chosen as being representative of 
typical experimental dielectric liquids. The resulting stability criteria as functions 
of the injection strength parameter C are given in tables 1 4  and 6 and illustrated 
in figures 1 and 2. 

The global monotonic lower bound 7, of 'i resulting from using the energy functional 
b,(t; 1 )  is clearly seen (cf. table 1) to be relatively insensitive to injection-strength 
values C 5 1. For larger values of C we see a marked destabilizing influence of 
charge diffusion, and the one-dimensional nature of the most-energetic disturbance 
(acrit = 0). On the other hand, the global monotonic lower bound resulting from using 
the energy functional b,(t; 1) with the diffusion-free equilibrium is clearly seen to  be 
relatively insensitive to the value of injection strength. I n  the case of weak injection 
(C + 1) we obtain within the context of this model, with potential and electrical field 
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FIGURE 2. Variations of the optimized stability criteria with injection parameter C for the 
diffusion-free equilibrium (S  = 0.1): (a )  global monotonic T~ values for & l ( t ;  1 ) ;  (6) global monotonic 
T~ values for g1(t,; 1); (c )  Conditional monotonic ?! values for b,(t; A ) ;  (d) global monotonic T1 values 
for b3(t; A ) ;  ( e )  conditional monotonic Tt values for b,(t; A ) ;  [ N conditional monotonic ?( values for 
b3(t; A ) ] ;  (f) global monotonic 5, values for &3( t ;  A ) ;  (9) linear instability curve of Atten & Moreau 
(1972). 

fixed on the electrodes, finite values of and the upper global monotonic bounds 
7,. In  any case of strong injection (C $ 1) all four bounds are well below any previously 

The global monotonic lower and upper bounds 5, and T2(>)  of 7 resulting from using 
the mixed functional 8,(t ; A )  (cf. table 4), incorporating electrical boundary conditions 
Qi = DO = D2Qi = 0 a t  z = 0 and 1, demonstrate in the limit C+O the asymptotic 
behaviour TC x 96.5 and TC z 150. Whilst for large C space-charge-diffusion effects 
demonstrate a destabilizing influence, in the C-t co limit the diffusion-free equilibrium 
suggests an asymptotic behaviour T x 90.3, and T x 151 respectively. As might have 
been expected, imposing the extra constraint of fixed charge on the electrodes tends 
to stabilize the system. A further comparison may be made with the bound of the 
diffusion-free linear instability analysis of Atten & Moreau ( 1972), incorporating, for 
finite C ,  Qi = D2Qi = 0 at z = 0 and Qi = 0 at z = 1, for which, in the limit C-20, 
TC2 x 221, and incorporating, for infinite C, Qi = DO = 0 at z = 0 and @ = 0 at z = 1 
for which T x 161. Atten’s (1976) instability results of a diffusion equilibrium 
unfortunately are not readily comparable with the above, since for a fixed injection 

determined experimental and theoretical values. - 
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Relative 
permit- 

Liquid and tivity 
injection ions 4% M s Texp 5, (5,) 

Chlorobenzene C1- 6 4.9 0.037 88 76 (85) 
Pyralene 1460 C1- 5.9 60 0.041 82 75 (85) 
Model liquid - - 
Nitrobenzene C1- 35 22 0.21 92 62 (98) 
Propylene carbonate C1- 69 51 0.44 88 60 (110) 

- 0.1 67 (90.3) 

TABLE 7.  Values of the optimized global monotonic bound 6, obtained from the mixed functional 
cf3( t ;h) .  ?1 corresponds to C = 500 and (Y1) refers to the limit C+oo for the diffusion-free 
equilibrium. Physical data and experimental instability results after Lacroix et al. (1975) are 
included for comparison. 

strength and ratio SIT his calculated value of T corresponds to  a specific value of 
S. Hence different values of C provide linear instability limits T relevant to  differing 
dielectric liquids. His results, however, for the case SIT = 5 x lop3 are included in 
figure 1. 

It is evident from tables 2,  3 and 6 that the conditional stability bounds 7, 
from B,( t ;  A),  &Jt;  A)  and b 3 ( t ;  A )  exhibit similar asymptotic behaviours to the 
corresponding diffusion-free global monotonic lower bound F1 of the mixed functional 
b,(t; A) .  For d,, d2 and g3 we have the asymptotic behaviour TC x 80.15, 137.3 and 
137.3 respectively in the limit C-tO, and T x 66.8,132.1 and 131.1 respectively in the 
C+ co limit. Indeed the results from the charge functionals b2(t; A )  and b,(t ; A )  are 
very similar, as perhaps might have been expected in that they incorporate identical 
electrical and fluid-dynamic boundary conditions. Moreover, these values of ?[ are 
also upper bounds of ?, which in the case of the mixed functional provide better upper 
constraints than those given by the trial-function values T2 .  It must be remembered, 
however, that  both the conditional stability bounds and trial-function estimates were 
obtained for two-dimensional disturbances only. However, it can be easily verified 
that taking trial functions with a hexagonal planform produces results identical with 
those possessing a two-dimensional roll character. 

of the linking 
parameter h in each functional (cf. tables 2 4  and 6)_exhibits an asymptotic behaviour 
x+constant in the limit C-tco, but a behaviour hC2+constant in the limit C+O. 
I n  addition in this latter limit @ = O(C-l) and W = O( 1) .  Thus this method of analysis 
ensures that the fluid-dynamic and electrical contributions to each of the functionals 
considered are scaled so as to  be of similar magnitude. 

Whilst the functionals implicitly involve the parameter M ,  the global and 
conditional stability bounds are independent of it. Even the decay-rate measure A 
is only indirectly affected by M ,  and is actually only a function of the electrical 
Prandtl number. This latter non-dimensional number essentially measures the 
importance of viscous to charge diffusion processes. As already mentioned for typical 
experimental dielectric liquids lo3 5 v /D ,  5 los, perhaps suggesting that charge 
diffusion is not, a t  least in the mainstream, of major importance, though for a 
successful application of energy stability theory it cannot be neglected totally. By 
comparing the results using a diffusion-free equilibrium with those obtained by 
retaining diffusion completely we find that only for large C does charge diffusion 
manifest its destabilizing influence. For small values of injection strength and for 

Certainly using a diffusion-free equilibrium the optimal value 
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S = 0.1 theresultingboundsonTimplyS/T = D,/K@o 5 2 x 10-2,possibly justifying 
the neglect of diffusion. 

Perhaps the most striking result of this analysis has been the monotonic global 
stability bound of 67 in the case C = 500 and 90.3 in the diffusion-free SCLC limit 
C+ co obtained from the mixed functional with S = 0.1 and using the physical 
constraint of total space charge always remaining non-negative. Numerical compu- 
tations were also carried out for the specific liquids pyralene 1460, chlorobenzene, 
nitrobenzene and propylene carbonate, and are presented in table 7. It can be seen 
that the analytically determined diffusion-incorporated bounds F1 on stability are all 
inferior to the experimental results Texp. It is perhaps worth noting that the value 
of T1 decreases as S increases, reflecting the destabilizing effect of diffusion, whereas 
the diffusion-free value increases as S increases, once again stressing the necessity of 
including diffusion a t  every stage in the analysis. Nevertheless the assumptions 
implicitly made in this model, including the boundary constraints, are only approx- 
imations to those occurring in the laboratory. A better understanding of the physical 
context might lead to the construction of more physically relevant functionals. 

Appendix 
Strictly we require analytic proofs of the existence of finite maxima for 7c1, 7e1 

and A-1 for each of the functionals considered. We present as a typical example that 
corresponding to 7e1 for the mixed functional b3(t; A )  defined by (cf. (6.16)) 

} >  (A11 
(qE * (u - e) - QleI2 - AqV (qE+ Qe) - Aqua VQ 

(lVUl2 + Sq2 + ASIVq12) 
771 = max{ 

H ** 

where H** is defined by (3.5), (4.7) and (5.2). Then H** is a space of almost-periodic 
smooth functions for which e = - Vq5 and p = V'e, and 4, e and q vanish on bounding 
surfaces. Now 

so that 

Joseph (1976, p. 13) has shown that (02)/(lVO12), where 8 is a smooth function 
vanishing on the boundaries, is bounded above. Hence from (A 3) we can assert that  
(le12)/(q2) is also bounded above. 

If we confine our attention to cases of finite non-zero injection parameter C and 
use the equilibrium properties E(z)  < E(1)  and Q(z) Q Q(0) for all Z E  [0,1], where E(1) 
and Q(0) are finite quantities, together with integration by parts, we can write 

( ( A +  1 )  (lu12+le12)+(h+2)E2(1)q2+h[2Q2(0)+1]IVq12) 
2(IVul2+Sq2+hXIVql2) 

7c1< 

Once again Joseph (1976, p. 13) has shown that ( l ~ l ~ ) / ( l V u ( ~ ) ,  where u is a smooth 
solenoidal vector field vanishing on the boundaries, is bounded above. Then from 
(A 3) and (A 4) we have 7e1 bounded above, as required. 
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